
Recall the general update equation for gradientdescent2L
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Let's look at an example of gradient descent
in 2 D

to see what gradient descent is actually doing

Suppose we use the average squared less
so our

loss function looks something
like
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Remember the goal of gradient descent is to
find

the 0 that minimizes the loss function I'll

call that optimal value D



On the graph 0 looks like
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The way gradient descent
works is that starts with

a random guess for D which is the initial

value 0 6 On the graph O could be

anywhere since it is a random guess
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Obviously Q is not as we can see from

the graph But how does gradient descent know

that 0 0 That's where Ito comes in

In our 2b example represents the slope of

the tangent line to the loss function at our

current value of 0 GL
F too

Loss

Nd

to o0

Since Ito at 0 0 is large and positive

gradient descent knows that
I O't This is

because 2 0 at 0 0 sirree 0 is the

minimum for L



So gradient descent knows that
O_O 0 so

it needs to guess another
value for 0 which

will be 0 But what should 0 be

Let's use the information that
2 is large

and positive at 0 0 Since It is

positive we know that L is increasing at 0 0

this means that e O because functions increase

after attaining their minimum value
we can say this

based on the definition of what minimum is Thus
this iswherethe signcomesfrom

we know that we need to push baek our estimate for in

by choosing 0
t
to be less than

CO2 theupdate
equation

But how much less than O should 0 be Let's

use the other piece of information we have about

It at 0 0 that It is large in additionto

positive



2L
F too

Loss

Nd

t o0

Since at 0 0 is large we can say that

0 is pretty far from D The reason for this

relies on the interpretation of as the slope of

the tangent line If the slope of the tangent

line is large and positive then the function is

increasing quickly You can see this from Itoto cos

on the graph Since we are trying to find the value

of Q that minimizes the function we want to move

away from values of
0 where the function is

increasing quickly



Specifically we know that when the slope of the

tangent line is large we need to change our

0 by a lot In general we know that

the larger our the more we need
to

to change 0 the way the gradient

descent update expresses this
is by changing

0 by an amount proportional to
E e
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push back by an
amountproportional to 0 I Ct

Let's stop and do a quick summary of what

we've said so far The reason the update

rule has a minus sign is because when It is
positive we've overshot

and have to push

back our estimate to be less than the previous estimate



Additionally we push back the estimate for
0 by

an amount proportional to It because when

is large we know we are far from 0
t

One last thing to take care of what is the

purpose role of
2
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when we push back O_0 in the graph above

depending on how large ftp o oco is we might

push 0 baek to a value like 0 which

overshoots 0 on the other side



To avoid this problem of overshooting 0

we multiply by a fraction x so we

don't push our estimate by the full

magnitude of Keep in mind

0 C x e 1 I think about why With

this fraction x we push 0 to a

value like 0
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All of what we've said so far happens

each time 0 is updated But how do

we know how many times to update
0

We continue updating 0 until 0 4
11 04

this is because looking at the update

equation the only way for 0
4 4 04

is if 1 acts 0 But if

2h
If I acts 0 then 0 is the

minimum thus O D and we've

found the optimal 0


