DS 100/200: Principles and Techniques of Data Science Date: November 13, 2019

Midterm 2 Review: Linear Regression & Feature Engineering

Name: Ra.ﬁuv;lr Kunam|

| Fall 2018 Midterm Q10-11: Linear Models

1. Recall from lecture that a linear model is defined as a model where our prediction is given
by the equation below, where p is the number of parameters in our model and ¢(x) is some
transformation on x:
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Which of the following models are linear? Select all the apply. Q%u ation is ﬁ v
A. fa(z) = Prx + By sin(x) feg Some Loration
N B. fs(z) = Bz + By sin(z?) ‘F «
§C. fs(x) =5 ’
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DE. fs(x) =In(Biz + B2) + B3

2. Suppose we have data about 5 people shown below:

name level | trials | phase
Magda | 1 10 1
Valerie | 5 20 -1
Kumar | 2 15

Octavia | 6 30 1
Dorete | 6 5 -1

(a) Suppose we want to model the level of each person, and use the following constant model:
fs(x) = 1. What is /3, the value that minimizes the average L2 loss?
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(b) We can also compute B from the previous part by using the normal equation B = (¢T®)1oTY.
If we use the normal equation to compute (3, how many rows and columns are in the fea-
ture matrix ®? Write your answer in the form rows x columns, e.g. 1 x 1.
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3. Recall the tips dataset from lab and homework, which contains records about tips, total bills,
and information about the person who paid the tip. There are a total of 244 records in tips. In
addition, you can assume that there are no missing or NaN values in the dataset. The first 5
rows of the tips DataFrame are shown below, where sex takes on values € {” Male”,” Female” },
smoker takes on values € {"Yes”,” No"}, day takes on values from Monday to Sunday as
strings, and time takes on values € {" Break fast”,” Lunch”,” Dinner” }.

total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 2459 3.61 Female No Sun Dinner 4

(a) Suppose we use pd.get_dummies to create a one-hot encoding of only our sex col-
umn. This yields a feature matrix ®,; with exactly 2 columns sex Male, sex_Female,
where values can be either O or 1 in each column.

Which of the following are true? Select all that apply.
UA. @, has 244 rows.
U B. &, has full column rank.
OC. (®],®41) is invertible.
LI D. None of the above
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(b) Suppose we use pd.get_dummies to create a one-hot encoding of only our sex and
smoker columns. This yields a feature matrix @, with 4 columns.

Which of the following are true? Select all that apply.
LJA. @, has 244 rows.
U B. @4 has full column rank.
OC. (®],42) is invertible.
[JD. None of the above
(c) Suppose we use pd.get _dummies to create a one-hot encoding of only our sex and

smoker columns, and also include a bias column. This yields a feature matrix ®,3 with
5 columns.

Which of the following are true? Select all that apply.
[JA. @43 has 244 rows.
L B. ®,3 has full column rank.
OC. (®J3Pys) is invertible.
[JD. None of the above
(d) For the day column, we can either use a one-hot encoding or an integer encoding. By

integer encoding, we mean mapping Monday to 1, Tuesday to 2, and so on. Which of the
following statements are true? Select all that apply.

[1 A. One-hot encoding creates fewer columns than integer encoding.

[ B. One-hot encoding gives all days of the week the same weight, while integer
encoding gives certain days of the week higher weight than others.

[J C. The columns generated by the one-hot encoding of the days of the week are
linearly independent of each other.

U D. None of the above

Fall 2018 Midterm Q21-22: Linear Regression

4. Suppose in some universe, the true relationship between the measured luminosity of a single
star Y can be written in terms of a single feature ¢ of that same star as

where ¢ € R is some non-random scalar feature, 5* € R is a non-random scalar parameter,
——— —_——

and ¢ is a random variable with E[¢] = 0 and var(e) = &2. For each star, you have a set
- T L T
of features & = [qﬁl Qo ... ¢n} and luminosity measurements y = [yl Yo ... yn]

generated by this relationship. Your & may or may not include the feature ¢ described above.
The ¢; for the various y; have the same probability distribution and are independent of each
other.
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(c) Suppose you have information about the exact ¢ value for each star, but try to fit a linear
model for Y that includes an intercept term 3.

Y =B+ 6o

Note the true relationship has no intercept term, so our model is not quite correct. Let Bg
and Bl be the values that minimize the average Ly loss. Let y be the actual observed data
and y = 50 + qu’) be the fitted values.

i. Which of the following could possibly be the value of ﬁo after fitting our model?
Select all that apply; at least one is correct. .
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Z L ii. Which of the following could possibly be the residual vector for our model? Select
€ - all that apply; at least one is correct.
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5. Suppose we create a new loss function called the OINK loss, defined as follows for a single
observation:

a(fs(x) —y) fs(z) >y
by — fa(x))  falx) <y

You decide to use the constant model (given on the left) and average OINK loss (given on the
right).

Loink(B,z,y) = {

fo(z) =8 L(B,x,y) ZLOINK B, i, ys)

The data are given below. Find the optimal A3 that minimizes the loss.
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(a) whena=0b=1
(b) whena=1,b=5
(c) whena =3,b=06
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6. What is always true about the residuals in least squares regression? Assume our model in-
cludes a bias term. Select all that apply.

® A. They are orthogonal to the column space of the features.
%“DV\‘AWW% @ B. They represent the errors of the predictions.

[J C. Their sum is equal to the mean squared error.

@ D. Their sum is equal to zero.

[ E. None of the above. arizd hien
one of the above ﬁ L; /0”) no /\egu/

7. Which are true about the predictions made by OLS (ordinary least squares, no regularization)?
Assume our model includes a bias term. Select all that apply.

# A. They are projections of the observations onto the column space of the features.
@ B. They are linear in the chosen features.

@ C. They are orthogonal to the residuals.

[J D. They are orthogonal to the column space of the features.

L] E. None of the above.

8. Which of the following would be true if you chose mean absolute error (L1) instead of mean
squared error (L2) as your loss function when making a linear model? Select all that apply.

[ A. The results of the regression would be more sensitive to outliers.
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(] B. You would not be able to use gradient descent to find the regression line. Cxeepf -fhc
8 C. You would not be able to use the normal equation to calculate your parameters. """
U D. The sum of the residuals would now be zero.
L E. None of the above.
9. Let § € R" be the vector of fitted values in the ordinary least squares regression of y € R"
on the full column-rank feature matrix ¢ € R™*? with n much larger than p. Denote the fitted
coefficients as # € R? and the vector of residuals as e € R".

(a) What is ®(®7d)~1dTy?

OA.0 OB.g (OC. e (OD. i OE. 1  (OF None of the above
(b) What is ®(®7®)~1d73? (Notice the hat in §)

OA.0 OB.§ (OC e OD. S (OE 1 (OF Noneofthe above

(c) Suppose e # 0. Define a new feature matrix ¥ by appending the residual vector e to the
feature matrix ®. In other words,

v = (p: 1 (p:,Z T (p:,d €

b

We now want to fit the model y = Wy = vy ®. 1 + ®.2 + - +7,P.p, + 11 by
choosing 4 = [J1 ... 9411]" to minimize the Ly loss. What is 9,1 ?

~T ~

OA.0 OB.1 (OC ey OD 1-827
OE. (#7®)"'®" (OF. None of the above

10. We collect some data D = {(x1,%1), ..., (Tn,yn)} and decide to model the relationship be-
tween X and y as

Y=051P.1+ BoP. 2
where ®; . = [1 xl} We found the estimates @1 = 2 and Bg = 5 for the coefficients by

minimizing the L, loss. Given that ®'® = 4 2], answer the following problems. If not

2 5
enough information is given, write “Cannot be determined.”

(a) What was the sample size n? Hint: Consider the form of the feature matrix.

(b) What must <I)Ty be for this data set?
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