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Bias-Variance Overview

Some models are better than others. But how do we quantify that?

1. We could say the model with the lowest training error is the best

2. We could say the model with the lowest test error is the best

We can't choose the model with the lowest test error. Why?
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Almost always, lower bias means higher variance and vice versa. This
contradicts our goal of achieving a model with low bias AND low
variance. red model: high vanamee, low bias
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Cross-Validation Overview

In general, cross-validation is used to choose between a set of things.

For now, those things are models. The goal of cross-validation is to
simulate evaluating our model on the test data. 4 fold ¢V w/ 3 medels M1,12, M3
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At the end of cross-validation, we find the model with the lowest
validation error and choose that model as the model to train on the

entire training set.



Cross-Validation in a Pretty Picture
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You can think of cross-validation as using "practice tests" (the
validation sets) to find out what the best model is for the "final exam"

(the test set). Folds refer 4o

#t of validabion sets



Why bother with cross-validation?

Remember that every model has a model bias and a model variance. We
already know how to get a model with low model bias, that's what
training a model does by definition!

But how do we get a model with low variance? Remember that a model
with low variance generalizes well, or in other words does well at
predicting data it has not seen before.

How does this relate to cross-validation?
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Regularization Overview

We can do better than cross-validation when trying to achieve low
model variance by using regularization.

Regularization penalizes models from having large weights on features.
Penalizing large weights means discouraging the model from using
large weights. Why does this help us with model variance?
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Penalizing models for having large weights is done by adding a term to

the loss function our model trains on:
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The AS(B) term is the penalty. To penalize model weights, we can

choose = Z g,
1.5(8) = ||8][3 (ridge regression)
2.5(8) = >, |Bi| (LASSO regression)

Check your understanding: What condition must hold for AS(3)?
xs(8)z 0!



How/why does regularization penalize model
weights?

The process of training is trying to find the model with lowest bias. By
definition, this means training is trying to find the model with zero bias.

But that's not what we want:
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When | penalize the model weights, I'm telling the model to try and
achieve low bias without letting the 3; be large for any of the features.
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Feedback Form

This anonymous form is for me to learn what | can do to ensure you all
get the most of discussion and lab. This form will be open all semester,
and I'll be checking it regularly. Be as ruthless as you want, | promise my

feelings won't get hurt.

Feedback Form: tinyurl.com/raguvirTAfeedback



