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» |f we have a constant model then our model is ¥y = 6y and it
only captures the distribution of a single variable (summary
statistic like mean, median depending on loss function)

A
» If our model is linear in X then Y =60y + 6:X = a+ bX for
some a,b € R

» Pearson’s correlation coefficient » measures strength of linear
association between two variables . )

> re-1,1] S

» if r = 0 then our two variables are uncorrelated

» correlation does NOT mean causation
» correlation gives no information about non-linear association
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» with some manipulation we see
OX,Y = %Z:’L:l(xi —7)(yi —y) =roxoy




Simple Linear Regression

Starts with a simple regression model

y=a-+ bX

h, - A < b 2
Choose squared loss (L2 loss) |

(yi = 90)* = (yi — (a + baz))’
Average across the entire dataset (MSE)

Lia,b) = = (i — (a + b))’
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Solving for optimal model parameters we have

2 o n I
b=r-2 a=79y— bz
Ogx

\



Multiple Linear regression

The multiple linear regression model is linear in its features
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§ = 0030 + 0121 + Oamy + ... + 0,3, = O30 + Y _ ;3
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> This model has p features 71.,  guleg shey oot o V
» The weight of feature z; is 0; R> sty tawmar o A
> if we let 79 = 1 then § = > 7 0

Root Mean Square (RMSE) is just vMSE o
» We do this because RMSE has the same units as y, MSE has
units of 12
» adding features cannot increase RMSE
Multiple R? is the square correlation between true y and predicted
y, tells us the proportion of variance (information) of y that our
fitted features (model) explains
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Vectorized Multiple Regression [-47e3, 5] € R®

R™ is a vector space, we can think of it as the set of all lists of
length n of elements of R, the dot product is a function
(R™ R™) — R, Then our multiple regression model is just
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= fo(z) = 0o + 0111 + O2m0 + Opzp = 210 > y

Y
0o 1 -ox ©
91 T - @ 0
where 6 = | | andz=| _ | if we do this with different z

vectors, each corresponding to a different observation allows then
our model Y = X6 where
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More terminology
[R) = K

For vector v € R™ we denote the p-norm of v as ||v]||,, in this class
we will work with p = 1,2 corresponding to the L; and Lo vector
norms, for this class a norm is an operator which tells us the size of

a vector

loll2 = /03 + 0 + ...+

Jolly = Joa] + o]+ Joal = ) [ai]
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If we let e; = y; — ¥; then we can reformulate MSE as %2?21(61')?
If we stack these values we construct the residual vector e =Y — Y



Vectorize MSE

Let us vectorize MSE loss under model 6 = (6y 61 ... Gn)T

win L(B) = - > (wi—9)* = %Z(m - (X;-0))”

n - e
1=1 1 57\2 ,
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n Q Q Qz T
L n
= Ly - 92
p 1 2

— ) = m@inL(@) = m@inHY—XQH% = meinH@H%

Analogously to the scalar-case we can analytically solve the
vector-case using matrix calculus (out of scope) or geometrically
(very in scope)






Geometric derivation

» Our prediction is a linear combination of the columns of X,
thus our prediction lives in span(X) € R"

» Our goal is to find some vector Y in span(X) closest to Y

» This is the same as finding Y which minimizes e
» This is achieved if you set Y to orthogonal projection of Y
onto span(X

> two vectors are orthogonal if and only if their dot product is 0
< ’11 (s we want e to be orthogonal to span(X) so we want X'e =0

(1)
XTe=XT(Y-X0) =XTY -XTX0 =0
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LIFXTX is full rank (|mpl|es |nvert|b|I|ty then 0= (XTX)"1xTy
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» In the analytical solution X7 e = 0 and so if our model has a
linear intercept term (z9 = 1) then 17e¢ = 0, meaning that in
the optimal model the residuals sum to 0 (mean of residuals is
also 0, think about why)

» At least one solution always exists, a unique solution exists
only if XTX is invertible = a1l veunle

» if it is not invertible there will an infinite number of solutions
» X7TX is invertible if and only if all columns of X are linearly

independent which is the same as saying that X is full column
rank (same as X”X is full rank-row and column)

Invertibility of XX XTe =0 ( | Crov ]
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» X will not have full column rank

P if some features are linear combinations of other features
» if number columns is greater than number of rows
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