Gradient Descent

Raguvir Kunani

Data 100, Discussion 7

March 6, 2019

Last Time: Big Picture View of Modeling

What does modeling mean?

these

- 1. Identify a target variable that you want to predict
- 2. Gather some observational data about that target variable
- 3. Propose some relationship between the columns in your observational data and the target variable
- 4. Use ~ machine learning ~ to see how well that relationship actually predicts the target variable
- 5. Repeat steps 3 and 4 for multiple different relationships
- 6. Choose the relationship that best predicts the target variable

Clarification on Notation

1. Input data points are called x_i , and their corresponding output values are called y_i .

Example: How long will it take you to walk to class?

- x_i might represent 3 columns of data: how far the class is, how much time is left until the class starts, how long it took you last time
- y_i is how long it *actually* took you to walk to class
- 2. $L(\theta)$ is the average loss on the entire dataset. $l(\theta)$ is the loss on one point. $l(\theta) = (y \hat{y})^{a}$

$$L(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2 = \frac{1}{n} \sum_{i=1}^{n} l_i(\theta)$$

Clarification on Parameters

Step 3 says to propose some relationship between the columns in your data and the target. This is called **proposing a model**.

Example: Walking to Class parameters
$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$
 • θ_i are the **parameters** of this model (sometimes θ_i is called w_i).

- We often collect the parameters into a vector $\vec{\theta}$ (or \vec{w})

This model is *parametric* and *linear*. We will only study these models.

For simplicity, we write the above equation as $\hat{y} = f_{\theta}(\vec{x})$.

We have a model, but is the model good?

We have the loss function which tells us how bad our model is, but we can't use it just yet. Why?

Hint: What are the knowns and unknowns in $\hat{y}=f_{\theta}(\vec{x})$?

We need to choose a value for $\vec{\theta}$! This will fully define our model.

How to Choose a Value for θ ?

Whichever $\vec{\theta}$ minimizes loss seems natural since we want to find a model that gives accurate predictions (i.e. small loss).

But how do we minimize the loss? There are 2 ways:

- 1. Take the gradient of the loss, set it to 0, and solve for $\hat{\theta}$.
- 2. Use an algorithm that can find minimum values of functions.

Second method is gradient descent!

Relating back to the steps of modeling, we're now entering Step 4: see how well the proposed actually predicts the target variable.

Gradient Descent Algorithm (One Dimension)

- 1. $\theta^{(0)}$ = [any choice will work for $\theta^{(0)}$ if the loss function is convex]
- 2. for t=0 until you reach the minimum:

$$L = \frac{1}{n} \sum_{i=1}^{n} (y - f_{\phi}(x))^{2}$$

- a) Find the derivative of the loss, denoted $\frac{dL}{d\theta}$
- b) Evaluate the derivative at $heta= heta^{(t)}$, denoted $\left.rac{dL}{d heta}
 ight|_{ heta= heta^{(t)}}$
- c) Update: $heta^{(t+1)} = heta^{(t)}$ $\left. igcap_{lpha} lpha rac{dL}{d heta}
 ight|_{ heta = heta^{(t)}}$
- 3. Return $heta^{(T)}$, the final heta after the for loop is done
- $heta^{(T)}$ is the heta that minimizes the loss L(heta)!

Our model is $\hat{y}=\theta x$ and loss is $L(\theta)=rac{1}{n}\sum_{i=1}^n(y_i-\theta x_i)^2$.

Conceptually, gradient descent is what you would do if you had to get to the bottom of a hill but you can only see a small distance around you.

$$f(\vec{x}) = f(x_1, \dots, x_n)$$

Gradients: Derivatives in Multiple Dimensions

The **gradient** of a function f that takes a vector \vec{x} as input is $\nabla_{\vec{x}} f(\vec{x})$.

 $x = \begin{bmatrix} x_4 \\ \vdots \\ \vdots \end{bmatrix}$

How to Find the Gradient of a Function:

- 1. For every element x_i of the input \vec{x} to f:
 - a. Find the *partial derivative* with respect to x_i , denoted $\frac{\partial f}{\partial x_i}$.
- 2. Collect all the $\frac{\partial f}{\partial x_i}$ into a vector:

This vector is the gradient of $f(\vec{x})$: $\nabla_{\vec{x}} f(\vec{x})$.

Example: Worksheet Problem 1 and 2

Gradient Descent Algorithm (Multiple Dimensions)

- 1. $\vec{\theta}^{(0)}$ = [any choice will work for $\vec{\theta}^{(0)}$ if the loss function is convex]
- 2. for t=0 until you reach the minimum:
 - a) Find the gradient of the loss (denoted $\nabla L(heta)$)
 - b) Evaluate the gradient at $ec{ heta}=ec{ heta^{(t)}}$ (denoted $abla L(ec{ heta}))igg|_{ec{ heta}=ec{ heta^{(t)}}}$
 - c) Update: $ec{ heta}^{(t+1)} = ec{ heta}^{(t)} + lpha
 abla L(ec{ heta}))igg|_{ec{ heta} = ec{ heta}^{(t)}}$
- 3. Return $\vec{\theta}^{(T)}$, the final $\vec{\theta}$ after the for loop is done

 $ec{ heta}^{(T)}$ is the $ec{ heta}$ that minimizes the loss $L(ec{ heta})$!

Example: Worksheet Problem 3B

Nothing changed except

I put some symbols

on top of the Q!

Learning Rates

Do Problem 3A

There are 2 types of learning rates:

- 1. **Constant learning rates**: simple, but prone to overshooting near the minimum
- 2. **Decaying learning rates**: learning rate is a decreasing function of t

Challenge Question: Why would we want decaying learning rates?

Each update we make to Θ gets us closer to Θ^* , but there is the danger that a step size too big will make us overshoot Θ^* . Thus, we want a learning rate that is smaller as we get closer to Θ^* . This is exactly what a decaying learning rate does.

Closer Look at the Gradient Descent Update Rule

We ideally stop updating $\vec{\theta}$ when the gradient is 0, but in practice this does not always occur. To fix this, we can either:

- 1. choose a number of times to update (epochs)
- 2. stop updating when $\vec{\theta}^{(t+1)}$ is really close to $\vec{\theta}^{(t)}$

Both of these fixes correspond to changing the for loop condition.

Stochastic Gradient Descent

Computing $\nabla L(\vec{\theta})$ requires computing n different gradients (1 for each data point) and averaging them. To see why, note:

$$abla L(ec{ heta}) =
abla \left[rac{1}{n} \sum_{i=1}^n l(ec{ heta}, ec{x_i})
ight]$$
 by definition of $L(ec{ heta})$.

Instead of computing $\nabla L(\vec{\theta})$, we can instead **randomly** choose a point $\vec{x_i}$ and compute $\nabla l(\vec{\theta}, \vec{x_i})$. Then the gradient descent update rule is:

$$\left. ec{ heta^{(t+1)}} = ec{ heta^{(t)}} + lpha
abla l(ec{ heta}, ec{x_i}))
ight|_{ec{ heta} = ec{ heta}^{(t)}}$$

Anonymous Feedback Form

tinyurl.com/raguvirTAfeedback