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Last Time: Big Picture View of Modeling

What does modeling mean?

1. Identify a target variable that you want to predict
2. Gather some observational data about that target variable

6o Propose some relationship between the columns in your
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s W (4)Use ~ machine learning ~ to see how well that relationship actually

observational data and the target variable

rese predicts the target variable
st B, Repeat steps 3 and 4 for multiple different relationships

6. Choose the relationship that best predicts the target variable



Clarification on Notation

1. Input data points are called a;, and their corresponding output
values are called y;.

Example: How long will it take you to walk to class?

o x; might represent 3 columns of data: how far the class is, how
much time is left until the class starts, how long it took you last time

e Y, is how long it actually took you to walk to class

2. L(0) is the average loss on the entire dataset. [(6) is the loss on
one point. (@) (;3 ‘3)
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Clarification on Parameters

Step 3 says to propose some relationship between the columns in your
data and the target. This is called proposing a model.

Example: Walking to Class ?awwwd'&f"s o,
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o 0; are the parameters of this model ?gometlmes 0; is called w;).

« We often collect the parameters into a vector 8 (or w)

This model is parametric and linear. We will only study these models.
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For simplicity, we write the above equation as y*="fy(Z).



We have a model, but is the model good?

We have the loss function which tells us how bad our model is, but we
can't use it just yet. Why?

Hint: What are the knowns and unknowns in g = fy(Z)?
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We need to choose a value for 6—?] This will fully define our model.
Example: § = fp(Z) = 0y + 61z
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How to Choose a Value for 6?

Whichever 5 minimizes loss seems natural since we wanttofind-a
model that gives accurate predictions (i.e. small loss).

But how do we minimize the loss? There are 2 ways:

1. Take the gradient of the loss, set it to 0, and solve for é

2. Use an algorithm that can find minimum values of functions.
Second method is gradient descent!

Relating back to the steps of modeling, we're now entering Step 4
see how well the proposed actually predicts the target variable.



Gradient Descent Algorithm (One Dimension)

ovr C\mo;ce of O of Hime t=0
1 w = [any choice will work for 9(0) if the loss function is convex]

~ o~
2. fort = 0 until you reach the minimum: L= ’: Z_ (;3'109 (=)
a) Find the derivative of the loss, denoted d@

b) Evaluate the derivative at @ = () denoted %

6=0()
c) Update: O(t1) = @ a

9:0(t)
3. Return 8(T)  the final @ after the for loop is done

0T is the 6 that minimizes the loss L (#)!



1D Gradient Descent Example squored less
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Conceptually, gradient descent is what you would do if you had to get to
the bottom of a hill but you can only see a small distance around you.
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Gradients: Derivatives in Multiple Dimensions

The gradient of a function f that takes a vector & as inputis V z f (Z).
¥q
How to Find the Gradient of a Function: ~= | :

Xn

a. Find the partial derivative with respect to x;, denoted 86:;;- :

1. For every element x; of the input & to f:

2. Collect all the gg into a vector:

This vector is the gradient of f(Z): V3 f(Z).

Example: Worksheet Problem 1 and 2



Gradient Descent Algorithm (Multiple Dimensions)

1. 970) = [any choice will work for 5(0) if the loss function is convex]

2. fort = 0 until you reach the minimum:
a) Find the gradient of the loss (denoted V L(6))

—

b) Evaluate the gradient at 6 =90 (denoted V L(

¢) Update: §(t+1) = () 4 aVL(J))

—0)

3. Return g(T), the final 5 after the for loop is done

N othing e\naw\,gec\ except

—

(T) ~ o N
6" is the 6 that minimizes the loss L(6)! T put some syoubals

Example: Worksheet Problem 3B on +9? of e e !



Learning Rates

Do Problem 3A
There are 2 types of learning rates:
1. Constant learning rates: simple, but prone to overshooting near

the minimum

2. Decaying learning rates: learning rate is a decreasing function of ¢

Challenge Question: Why would we want decaying learning rates?
Eadn u?&ake we mike +o O %@H vs doser 2 O©7 , but dhere Is
the dager Hhat o shep siee oo blg will malee us overshest &7,
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Closer Look at the Gradient Descent Update Rule

We ideally stop updating 5 when the gradient is 0, but in practice this
does not always occur. To fix this, we can either:

1. choose a number of times to update (epochs)

2. stop updating when §(t+1) is really close to g(t)

Both of these fixes correspond to changing the for loop condition.
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Stochastic Gradient Descent

—

Computing VL(H) requires computing n different gradients (1 for
each data point) and averaging them. To see why, note:

—

VL(g) =V [% vy l(é;:E;)] by definition of L(6).

—

Instead of computing V L(8), we can instead randomly choose a point

z; and compute V1(0, ;). Then the gradient descent update rule is:

gD = g 1 aVi(6, ;)

—
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