Linear Regression

Raguvir Kunani

Data 100, Spring 2020



Simple Linear Regression Quick Review

Simple linear regression involves finding a "line of best fit" that explains
the relationship between 2 variables x and y. In fancy math terms:
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All this really means is we are trying to find the values of a and b so that
a line with the equation y = a + bx best fits the data.
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Residuals

The residual is a measure of how "off" our prediction was. In simple
linear regression, the residual for the z’th point is:
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So really what linear regression is doing is finding the a and b that

minimize the sum of (squared) residuals. This view of linear regression
as minimizing residuals is very helpful to understanding linear regression
in higher dimensions.



My |+(Ple
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In multiple dimensions, linear regression goes from finding a line of best
fit to finding a plane of best fit.

X1

1 vt = X .
W‘P mfvf: (xi,xa

Keep in mind that the quantity you are trying to predict is still a scalar
quantity, but now you have multiple inputs (labeled x1, x2, ..., 7).
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Mvahgariate Linear Regression in Math

Remember that the simple linear regression problem minimizes the sum

of the squared residuals i; — (a + bx;)?. Wle can use the same
multiole

residuals interpretation to formulate them linear regression
problem, but we need to rewrite the residuals for the multidimensional
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Now we can write our new ragifdatiete linear regression problem:
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This looks horrendous, and will.-only get worse with-more dimensions.

This is where linear algebra comes into play. Let's rewrite the above
problem using matrix vector notation.



Simplifying the Expression for Model's Prediction

Let's start by collecting all the parameters into a vector @ = | 6

Then we can write 6y + 91&31',1 -+ 92(131"2 as [x; 1| - 0.
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If we define avector p; = |11,
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then we can write 0y + 01x; 1 + 02x; 2 even more simply as @; - 6.
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multiple
We can update our W@&e linear regression problem to be:
n
. 2
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This looks a lot better, but we can simplify even more.

Let's write the true values and our predlcted values as n-dimensional
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Mumwme Linear Regression V3

Recall ||z|| is the norm of the vector 2z and || z||* =

Then we rewrite our linear regression problem as:

0* = argmin ||y - 9]

There's just one last simplification. Note that
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where P is a matrix that contains the ¢; as its rows.
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Maviddriate Linear Regression V4
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Using P, we can write the M&Mi@ linear regression problem as:
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This is the final version of the problem! This representation is much
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more compact and does not change as the number of dimensions
increase.

Note that this version of the problem is exactly equivalent to the original
version we started with. | did not change the problem; | just rewrote the
problem into a form that allows us to use linear algebra.



A Closer Look at ||y — ®6||?

Since || z||? represents the length of z, we canthink of ||z — z]|? as
the "length of the difference" between x and z.

x — z||? is the distance between x and z.

Put more simply,

2, is really

This means linear regression, in trying to minimize ||y — 6|
trying to minimize the distance between y and ®6.

This sounds very similar to minimizing residuals! In this case, the
residual is a vector, specifically y — d0.



How to Compute 0*: Part 1

Since our goal is to choose 6" such that ®0* is as close to y as
possible, it seems natural to set 0™ = y and solve for 6*.

However, this equation rarely has a unique solution. This could happen
for 2 main reasons:

1. y & range(P). This means there is no vector v such that
®v = y. (More on this in the next slide).
2. ® is not invertible. If this is the case, create a new ® and start over.

Thus, the best we can do is choose 8* thatminimizes the distance
between y and ®0*.



A Closer Look at y ¢ range(P)

The matrix-vector product @6 can be thought of as a linear
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The set of all possible linear combinations of the columns of @ is called
range(®P) because it contains all possible outputs of multipltying ® by
any vector.

Graphically, range(®) is depicted as: /mem /
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Theny ¢ range(P) is depicted as: //
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How to Compute 0*: Part 2

Since we are stuck with y ¢ range(®), we can't set $6* = y.

So how else are we supposed to choose 8* such that the distance
between y and ®O* is minimized?
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Projections and Their Important Properties

The projection of a vector  onto span(u;, uz ) is the vector in the
span of u1 and u9 that is closest in distance to .
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If v is the projection of x onto span(uy, uz), thenz — vis
orthogonal to span(u1, us). This is because the straight line distance
is the closest distance between any 2 points.



Using Projections to Solve Linear Regression

From the previous slide, we know that y — PO* is orthogonal to
range(CI)). U,eca»gc @9’ s e Pv«juﬁon of y oih reavye (@)

Since range(®) is the set of all linear combinations of the columns of
®, it must also be true that y — ®0* is orthogonal to each column of P:

¢ (y—P0") =Dy (y —PO") = ... = P4 - (y — 26%) = 0.
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We can write all these equations using matrix form as:
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(y—®0") =" (y —26") =0
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The Normal Equations

Solving the equation from last slide:
dL'(y — ®6*) =0
'y — (T®)* =0
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These are the normal equations you saw in lecture! Solving for 8%,
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Some Terminology

There are a lot of different names for the process of finding 0*:

1. Training a least squares model
2. Fitting a least squares model

3. Finding 6 that minimizes MSE

All of these things just mean setting up and solving the normal
equations (@1 ®)6* = &Ly,

When you call model.fit(X, y) , solvingthe normal equations is
what goes on behind the scenes.



What Happens After Finding 60*?

After you've computed 6*, you can use your model to make predictions!
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When you call model.predict(x) , thisis what is happening behind
the scenes.



Feedback Form

This anonymous form is for me to learn what | can do to ensure you all
get the most out of this class (and specifically, discussion and lab). This
form will be open all semester, and I'll be checking it regularly. Be as
ruthless as you want, | promise my feelings won't get hurt.

Feedback Form: tinyurl.com/raguvirTAfeedback



