DS 100/200: Principles and Techniques of Data Science Date: October 9, 2019

Discussion #7

Name: Qaﬁuv;“ ]<U V\a./n;

Dimensionality Reduction

1. Principal Component Analysis (PCA) is one of the most popular dimensionality reduction
techniques because it is relatively easy to compute and its output is interpretable. To get a
better understanding of what PCA is doing to a dataset, let’s imagine applying it to points
contained within this surfboard. The origin is in the center of the board, and each point within
the board has three attributes: how far (in inches) along the board’s length, width, and thickness
the point is from the center. These three dimensions determine the spread of the data.
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(a) If we were to apply PCA to the surfboard, what would the first three principal compo-

nents (PCs) represent? Feel free to draw and label these dimensions on the image of the
surfboard.

(b) Which of the three PCs should be used to create a 2D representation of the surfboard?
How come? Make a sketch of the 2D projection below.

2. Compare the scree plots produced by performing PCA on dataset A and on dataset B. For
which dataset would PCA provide the most informative scatter-plot (i.e. plotting PC1 and
PC2)? Note that the columns of both datasets were centered to have means of 0 and scaled to
have a variance of 1.

Scree Plot of Dataset A Screeplot of Dataset B
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3. Consider the following dataset X:

| Observations || Variable 1 | Variable 2 | Variable 3 |

1 -3.59 7.39 -0.78

2 -8.37 -5.32 0.90

3 1.75 -0.61 -0.62

4 10.21 -1.46 0.50
Mean 0 0 0

Variance 63.42 28.47 0.68

After performing PCA on this data, we find that X = U YV, where:

—-0.43 139 0.34
—-1.07 —-0.97 041

U=1022 —010 —147
128 —0.32 0.71
796 0 0
S=10 538 0
0 0 047

1.00 —0.02 0.00
V=1002 099 0.13
0.00 —-0.13 0.99

(a) The first principal component can be computed through two approaches:

1. Using the left-singular matrix and the diagonal matrix.

2. Using the right singular-matrix and the data matrix. Hint: Shuffle the terms of the
SVD.

Compute the first principal component using both approaches (round to 2 decimals).

(b) Given the results of (a), how can we interpret the columns of V7 What do the values in
these columns represent?

(c) Is there a relationship between the largest entries in the columns of V' and the variances
of X’s variables? If so, what is it?
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