DS 100/200: Principles and Techniques of Data Science Date: October 30, 2019

Discussion # 10
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Bias-Variance Trade-off

1. Assume that we have a function h(z) and some noise generation process that produces € such
that E [¢] = 0 and var(e) = 2. Every time we query mother nature for Y at a given a x, she
givesus Y = h(z) + €. A new e is generated each time, independent of the last. We randomly
sample some data (z;, y;)7; and use it to fit a model f;(x) according to some procedure (e.g.
OLS, Ridge, LASSO). In class, we showed that
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(a) Label each of the terms above. Word bank: observation variance, model variance, obser-
vation bias?, model bias?, model risk, empirical mean square error.
(b) What is random in the equation above? Where does the randomness come from?
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(d) Suppose you lived in a world where you could collect as many data sets you would like.
{ £ (x) are Given a fixed algorithm to fit a model f3 to your data e.g. linear regression, describe
e Tp

a procedure to get good estimates of E [ fﬁ(x)] (technical point: you may assume this
expectation exists).
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(e) If you could collect as many data sets as you would like, how does that affect the quality
of your model f3(z)?
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Ridge and LASSO Regression

2. Earlier, we posed the linear regression problem as follows: Find the 5 value that minimizes

the average squared loss. In other words, our goal is to find 3 that satisfies the equation below:
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Here, X is an x d matrix, 5 is a d x 1 vector and 7/is an X 1 vector. As we saw in lecture and in

last week’s discussion, the optimal B is given by the closed form expression B = (X'X)~!1X'y.

To prevent overfitting, we saw that we can instead minimize the sum of the average squared
loss plus a regularization function AS(/3). If use the function S(3) = ||3]|3, we have “ridge
regression”. If we use the function S(5) = || 5|1, we have "LASSO regression”. For example,

if we choose S(3) = Il E] ||2, our goal is to find /3 that satisfies the equation below:
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Recall that )\ is a hyperparameter that determines the impact of the regularization term. Though
we did not discuss this in lecture, we can also find a closed form solution to ridge regression:

B = (XTX + AI)"'XT7. It turns out that X”X + AI is guaranteed to be invertible (unlike X7X
which might not be invertible).

(a) As model complexity increases, what happens to the bias and variance of the model?
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(b) In terms of bias and variance, how does a regularized model compare to ordinary least
squares regression?
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(c) Inridge regression, what happens if we set A = 0? What happens as A approaches co?
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(d) How does model complexity compare between ridge regression and ordinary least squares
regression? How does this change for large and small values of \?
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(e) If we have a large number of features (10,000+) and we suspect that only a handful of
features are useful, which type of regression (Lasso vs Ridge) would be more helpful in

interpreting useful features?
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(f) What are the benefits of using ridge regression?
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Cross Validation

3. After running 5-fold cross validation, we get the following mean squared errors for each fold
and value of \:

Fold Num A=0.1 A=0.2 A=0.3 A=04 Row Avg
1 80.2 70.2 91.2 91.8 83.4

2 76.8 66.8 88.8 98.8 82.8

3 81.5 71.5 86.5 88.5 82.0

4 79.4 68.4 92.3 92.4 83.1

5 77.3 67.3 93.4 94.3 83.0

Col Avg 79.0 68.8 90.4 93.2

How do we use the information above to choose our model? Do we pick a specific fold? a
specific lambda? or a specific fold-lambda pair? Explain.
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4. You build a model with two regularization hyperparameters A and . You have 4 good candi-
date values for A and 3 possible values for v, and you are wondering which A, v pair will be
the best choice. If you were to perform five-fold cross-validation, how many validation errors
would you need to calculate?
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5. In the typical setup of k-fold cross validation, we use a different parameter value on each fold,
compute the mean squared error of each fold and choose the parameter whose fold has the
lowest loss.
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